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Abstract 

Integrating technological changes and sustainability considerations poses multidisciplinary challenges for the power system 
beyond economic and environmental benefits. Allowing energy from distributed energy resources to be traded and 
coordinated peer-to-peer in real-time can mitigate system and policy-making issues while decreasing the strain on power 
system infrastructure. TREX is an artificial intelligence (AI) assisted flexibility platform for community energy systems that 
can also act as an AI training tool. Using AI agents to manage instantaneous market interactions in real-time is the first step to 
long-term sustainability and flexibility. In this article, we show that deep learning agents are able to learn to exploit trading 
habits of opposing expert designed traders in a TREX environment. Based on the results, future efforts will be extended 
towards a multi-agent setup with full utilization of the capabilities of the market. 

1 Introduction 

Grid-beneficial integration of energy communities is a 
delicate task. On one hand, adding renewable energy (RE) 
and distributed energy resources (DER) without coordination 
could be more detrimental to the power system than their 
economic and environmental benefits. On the other hand, if 
the policies and incentives are too restrictive, then the pace of 
energy transition may be hindered and customers frustrated 
and alienated. 
 
There is currently a lack of flexible and robust solutions to 
actively real-time share and coordinate DER within 
communities. A well-designed energy flexibility platform will 
mitigate both system and policy issues. Better coordination 
will decrease load variability and localized voltage violations, 
eliminating the need for roundabout symptom-oriented 
solutions, such as decreasing feed-in tariffs or increasing 
curtailment. 
 
Our proposed energy flexibility platform, dubbed Transactive 
Renewable Energy Exchange (TREX), is designed to enable 
active, real-time energy coordination through the combination 
of a micro-transactive energy market, and AI-based energy 
management and trading agents. 
 
The success of deploying TREX depends on the close 
integration of market design and agent design. To accomplish 
this, TREX must also be an efficient AI training environment 
for the participating agents. A digital twin of a real 
community can be constructed to realistically evaluate the 
effects on economics and power flow, amongst other metrics, 

without the need to implement slow and expensive pilot 
projects.  
 
This article is organized as follows. Section 2 provides an 
overview of the philosophy, architecture and design of the 
TREX platform. Section 3 describes experiments used to 
demonstrate the basic abilities of proposed AI agents, while 
section 4 analyses their results. Major conclusions are 
presented in section 5. The authors assume that the reader has 
a basic understanding of economics, electricity markets, grid 
operations, machine learning (ML), reinforcement learning 
(RL), and AI. Background knowledge on these concepts is 
directly introduced, but references are provided.  
 
2 TREX 

2.1 Philosophy 

A resilient, flexible, end-user focused, and DER-centric 
energy system must be able to effectively deal with 
uncertainty towards loads or feed-ins. This is a common issue 
with pre-optimized or scheduled systems that often results in 
scalability and adaptability issues. Contemporary strategies to 
deal with such issues are shifting responsibility towards end 
users through demand response (DR), as successful DR 
programs are highly dependent on customer education and 
participation [1]. Consumers are increasingly frustrated with 
these policies and may eventually abandon the grid. Mass 
defection would be very detrimental to the electricity 
infrastructure. To mitigate this scenario, energy coordination 
should be automated, real-time, and using adaptive 
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approaches. TREX works towards achieving this goal with 
two complementary components: 
 
1. Deployment of localized, real-time transactive energy 

markets. Given competent actors, principles of market 
economy [2] should naturally improve energy 
coordination and system balance within a distributed 
architecture. 

2. Design and deployment of ML trained AI energy trading 
agents that can effectively use the aforementioned 
market, automating interactions for participants. 

 
The close integration of these components should facilitate 
emergence of self-adaptability. 

2.2 System Architecture 

The TREX architecture is designed to be modular and 
scalable. The clients are independent processes that 
communicate through an socket.io server, which handles 
high-level tasks such as client management and message 
relaying. The architecture allows for operations both in 
deployment mode and simulation mode. To train AI agents, a 
digital community can be recreated with real data, allowing 
for a high degree of consistency. 
 

 
Figure 1. Simplified TREX Architecture 

2.3 Market Design 

Because TREX is entirely software-based, the market 
mechanisms must be explicit and specific. This is important 
as the market response for every combination of actions is 
deterministic. 
 
Micro-Transactive Energy Market (MicroTE) is a market 
designed for TREX. Because MicroTE is small and localized, 
the communication overheads are minimized and can 
enabling higher settlement frequencies. This is especially 
relevant for highly DER penetrated systems with transient 
speeds in the order of minutes. 
 
MicroTE assumes that the grid is always available and can be 
interacted with according to net-metering rules, buying for 
14.49 cts/kWh and selling for 6.9 cts/kWh as per retail 
electricity pricing in Alberta in Nov2019. The rest of the 
MicroTE rules are as follows: 
 

1. The local market has two energy pools: one for 
dispatchable sources (such as batteries), and one for non-
dispatchable sources (such as solar). 

2. Auctions settle for energy to be delivered during one-
minute period from the end of the current round.  

3. During the current round, participants bid and ask for 
energy to be delivered during or beyond the next delivery 
period. 

4. Double auctions are used for settlements: bids/asks are 
settled pairwise, with bids sorted from the highest to 
lowest, and asks in reverse. Settlement only occurs if bid 
price is greater than or equal to ask. 

5. Bid/ask quantities can be partially settled. 
6. The settlement price is the average of bid and ask prices. 
7. For hardware integration reasons, bid/ask quantity must 

be an integer multiple of 1 Wh to allow direct use of the 
watt-pulse function of most smart-meters. 

8. During the delivery period, if a seller experiences a 
supply shortage, it must financially compensate at net 
metering prices. If a buyer settled for more than used, the 
buyer must still pay for the extra energy at settlement 
price. 

2.4 Agent Design 

The agent’s behavior via market interaction is defined by 
setting a small set of parameters (bid/ask, price, quantity, and 
source) each settlement round. We chose (deep) 
reinforcement learning (DRL), a machine learning framework 
focused on self-supervised learning of optimal behaviors for 
sequential decision-making problems using deep neural 
networks. The network receives a set of observations of the 
environment’s current state and then adjusts its behavior 
accordingly. The agent tries to maximize the expected 
cumulative reward (a feedback metric called value). 
 
The specific algorithm used in this article is DQN [3], an 
established DRL algorithm. DQN’s goal to learn action 
values for every possible action, given a set of observations. 
If successful, optimal acting is simply taking the action with 
the maximal value. Much improvements to DQN have been 
introduced and established. This work utilizes some that do 
not require the tuning of any additional parameters [4-8] to 
decrease complexity. 
 
To make sure the agent experiences enough of the 
environment, it performs learning with an exploratory 
behavior strategy called ε-greedy policy, acting randomly 
with probability ε and otherwise following the maximal value 
action. During validation, the agent follows the greedy, value 
optimizing policy. 
 
3 Experimental Design 
 
With clarity and analysis in mind, we limit the scope of this 
work to a highly controlled environment. We solely aim to 
demonstrate the ability of basic deep reinforcement learning 
(DRL) agents to learn utilizing MicroTE, exhibit stable 
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learning characteristics and outperform competing 
participants with fixed policy.  

The resulting experimental setup consists of one learning 
agent participant and two fixed, manually designed 
participants. All participants are given the ability to perfectly 
predict generation and consumption to eliminate the influence 
of prediction errors. No energy storage is used and therefore 
only the non-dispatchable pool is relevant. The participants 
attempt to sell/buy energy according to residual generation 
and the only observations allowed for participant logic are 
time-of-day and day-of-week, both mapped to a unit circle. 

The agent’s hyperparameter choices largely correspond to 
values commonly reported in the literature. ADAM [9] with a 
batch size of 24, learning rate of 0.0001, gradient norm 
clipping of 20 and otherwise default parameters are used to 
perform optimization. The Q-network is a 3-layer fully 
connected architecture with 64, 128 and 256 rectified linear 
units (ReLU), initialized using a scheme introduced by 
He et. al [10].  

Environment specific choices are the length of the replay 
buffer (56160 auction rounds), learning offset (20160 auction 
rounds), and network update frequency (51840 auction 
rounds). The agent’s action space consists of the preferred 
bid-price and ask-price for each time-step. The output heads 
of the branching Q-network have linear activation and cover 
the action space from bid/ask-prices (0.069 to 0.1449 $/kWh) 
in 30 steps. 

Three experiments were conducted. The goal for the first 
experiment is to learn the optimal bidding price only. The 
goal for the second and third experiments is to learn both 
optimal bidding and asking prices. In the first and second 
experiments, all non-learning agents bid and ask at fixed, 
time-invariant prices. The third experiment gives the non-
learning agents time-variant prices, based on time-of-use. 
This is a reasonable representation of a simple, expert 
designed systems. 

Experiments were performed over three stages: 

1. Training was performed for one epoch (49 days of 
transitions).  

2. Validation was performed by repeating the epoch with 
the currently found best strategy. The returns achieved in 
the validation epoch were used to evaluate agent 
performance. 

3. To establish an upper performance ceiling, a best 
response for the learning agent was calculated. For all 
experiments this best response was static, and the 
determination was therefore only performed once. 

4 Results and Discussion 

Since the goal of this paper is to show if TREX can be used as 
a DRL environment, optimal convergence and convergence 
speed are not of major focus. Under given hyperparameters, 

learning appears to be stable and non-asymptotic after 100 
episodes for all three experiments. 

The results of the baseline experiments shown in Fig 2. and 
Fig. 3 clearly demonstrate that the DQN agent learns when 
faced with fixed price participants. The difficulty here is to 
learn a fixed policy that is uncorrelated with the agent’s 
observations. The smoothed return curves show an 
approximately linear increase. As expected, learning bid and 
ask prices is a more difficult task with slower increasing 
expected return. 

Figure 2. Normalized and Smoothed Returns for agent 
learning time-invariant bid price 

Figure 3. Normalized and Smoothed Returns for agent 
learning time-invariant bid and ask prices 

Fig 4 shows that the DQN agent learns to outperform an 
expert-designed system with time-variant prices. Compared to 
the expert-designed system, the speed of convergence is 
faster. This can be attributed to a higher correlation of the 
return with the agent’s observation space. More complicated 
expert-designed systems as well as DRL agents can be 
expected to emerge from expanded observation spaces and 
looser behavioral boundaries. Since more complicated 
scenarios such as the inclusion of batteries, imperfect 
forecasts and more complex observation spaces are out of the 
scope of this article, we leave such investigations for future 
work. 
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Figure 4. Normalized and Smoothed Returns for agent 
learning time-variant, time-of-use-based bid and ask prices 

In general, as expert-designed systems are deterministic by 
nature, there is always an optimal response strategy that 
exploits part of the expert system and can be learned. For 
setups such as TREX, expert-designed systems are therefore a 
suboptimal choice. Future work will thus focus on improving 
DRL algorithms and training approaches for TREX 
specifically and partially observable, stochastic, competitive-
collaborative multi-agent environments in general. 

5 Conclusions 

This contribution introduces TREX as a flexibility platform to 
improve coordination within localized energy communities 
that exhibit high DER penetration. TREX leverages two main 
components. A localized micro-transactive energy market that 
allows quasi real-time trading via a double-auction system, 
and DRL-based AI agents to automate market interaction for 
participants. As a realistic, model-free simulation, TREX 
closely mimics the information flow of a deployed system, 
therefore opening up the possibility to become a practical and 
realistic training environment for AI to automate market 
interactions. 

TREX’s viability as an AI training environment is 
demonstrated by running several minimalistic experiments: 
training a DQN agent against static and time-dependent 
behaviors. The agent learns in a stable manner. This clearly 
shows the scalability potential of the proposed flexibility 
platform, since the only requirement is local data. 

Based on the presented results, future efforts will focus on 
DRL agents over expert-designed systems for market 
interaction, working towards a multi-agent setup with full 
utilization of the market’s capabilities. 
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